Sequences from the four DGGE patterns were closely related to B. subtilis and B. licheniformis; the B. cereus group; B. clausii, today known as Alkalihalobacillus clausii; and B. firmus, today known as C. firmus, respectively [25,68]. 16S rDNA sequencing and RAPD-PCR were also used by Sorokulova et al. in an attempt to assess the genetic
While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178).
Từ khoá: realtime PCR, Bacillus subtilis, aprE, probiotic. 1. ĐẶT V ẤN ĐỀ Bacillus subtilis, m ột lo ại vi khu ẩn probiotic sinh bào t ử, th ường được tìm th ấy trong đất và đường tiêu hóa c ủa m ột s ố độ ng v ật có vú. Vi khu ẩn này có th ể giúp duy trì s ự cân
What shape is Bacillus fusiformis? Posted on July 18, 2022 By Biology Team fusiformis) is a gram-positive, rod-shaped bacterium of the genus Lysinibacillus.
Bacillus clausii treatment showed a significant decrease of IL4 levels (p=0.004) and a significant increase of IFNgamma (p=0.038), TGFbeta (p=0.039), and IL10 (p=0.009) levels. In conclusion, this study shows that the Bacillus clausii may exert immuno-modulating activity by affecting cytokine pattern in allergic subjects and confirms previous
.
For example, the Bacillus clausii metE gene, which encodes a B12-independent form of methionine synthase, is regulated by tandem S box and B12 Comprehensive Natural Products II, 2010BACILLUS IntroductionI. Jenson, in Encyclopedia of Food Microbiology Second Edition, 2014ProbioticsBacillus species are sometimes used as probiotics in both animals and humans. Bacillus subtilis, Bacillus clausii, B. cereus, B. coagulans, and B. licheniformis have been the most extensively examined. It is clear that few scientific studies have been performed on the potential of these species as probiotics, especially compared with the application of lactic acid bacteria. Bacillus have the obvious advantage over other potential probiotics that they can be produced efficiently and cost effectively by drying and survive well through shelf life. They also will survive gastric acidity and survive into the bowel, the reputed site of action. At least some strains are able to germinate and reproduce in the human gastrointestinal tract. A number of products are registered for human use and also for animal use pigs, poultry, calves, aquaculture. Most products on the market do not have extensive clinical trial data. Claims often relate to extragastrointestinal effects, such as alleviation of allergy symptoms and rheumatoid arthritis symptoms, but claims for gastrointestinal efficacy are made for some products. The mechanisms by which bacilli may be effective as probiotics is not known. Some strains have been shown to produce extracellular is a B. subtilis–fermented soybean product, native to Japan, for which health benefits often have been ascribed. It is popular as a breakfast food. Natto has a strong odor and flavor and a viscous, stringy texture. In part, this is due to the production of a cell capsule of poly-γ-glutamic acid in stationary phase. Some B. cereus probiotic products are produced from strains that produce enterotoxin or at least contain enterotoxin full chapterURL in Biomedical ResearchK. Mikawlrawng, in New and Future Developments in Microbial Biotechnology and Bioengineering, 2016ProbioticsIt is a well established fact that some intestinal microfloras perform several important functions including metabolic, trophic, and protective ones for the body. Probiotics are formulations of live microbial cells such as Bacillus clausii, Lactobacillus, and Bifidobacterium that contribute to intestinal microbial balance. Probiotics play a vital role in directly maintaining gastrointestinal microbial balance in particular, and increasing the immunity of the entire body in general. Their benefits to human and animal health have been proven in countless scientific researches. Probiotics literally means “for life,” and they are microorganisms that are associated with benefical effects for humans and animals. Regular consumption of food containing probiotic microorganisms is recommended for establishment of a positive balanced population of useful or beneficial intestinal flora. They play an important role in the protection of the organism against harmful microbes and also strengthen the immune system of the host. Probiotics are also usually consumed after antibiotic therapy, the result of which may have destroyed beneficial microbial flora of the digestive tract. However, those probiotic formulations containing some Bacillus species are recommended for use along with antibiotics since these strains eg, B clausii are resistant to antibiotics Coppi et al., 1985. Generally, the probiotic formulations consist mostly of the strains of the genera Bacillus, Lactobacillus, and Bifidobacterium, but reports are now available about the use of other strains of bacteria such as Enterococcus and Streptococcus, and even fungi such as Aspergillus and Saccharomyces Fox, 1988. With the advancement in understanding of the ecology of gastrointestinal microbes and their roles it can be speculated that more desirable microbes from fungi will join the list of full chapterURL to Polyphenolic Compounds Modulates Type 1 Diabetes The Case of GenisteinGuannan Huang, ... Tai L. Guo, in Polyphenols Mechanisms of Action in Human Health and Disease Second Edition, ProbioticsProbiotics are defined as “mono- or mixed cultures of live microorganisms that can beneficially affect the host by improving the properties of the indigenous microflora” [99]. Common probiotic components include Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Bacillus clausii, Lactobacillus acidophilus, Lactobacillus GG, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus bulgaricus, and Streptococcus thermophiles [100]. In a prospective cohort study, probiotic supplementation at the age of 0–27 days in infants was associated with a decreased risk of islet autoimmunity comparing with probiotic supplementation after 27 days [101]. One study performed in NOD mice found that the oral probiotic VSL3 can effectively prevent T1D while inducing antiinflammatory IL-10 production [102]. Similarly, in another study, oral administration of VSL3 in NOD mice prevented T1D by inhibiting IL-1β expression and releasing components of inflammasome [103]. Moreover, by orally transferring Lactobacillus johnsonii strain from Biobreeding diabetes-resistant rats to BB-DP rats, a study found that the probiotics conferred T1D protection in diabetes-prone rats through enhanced Th17 differentiation [104]. In addition, it was reported that the combinatorial use of probiotics and vitamin C could effectively reduce BGL more than vitamin C alone in an alloxan-induced Wistar rat model [105].Read full chapterURL Ward, ... A. Kulkarni, in Encyclopedia of Microbiology Third Edition, 2009Bacillus Protease ProductionEnzymes produced by Bacillus species represent about 50% of the total enzyme market with the Bacillus alkaline serine proteases subtilisins being the single most dominant commercial enzyme because of its application in household detergents. The most important commercial serine alkaline protease, subtilisin Carlsberg, produced by B. licheniformis, consists of a single peptide chain with 274 amino acid residues, contains no cysteine amino acids, and consequently has no disulfide bonds. This enzyme is also produced by Bacillus pumilus. Another Bacillus serine alkaline protease, subtilisin BPN, produced by B. amyloliquefaciens, B. subtilis, and B. stearothermophilus has little commercial significance compared with subtilisin Carlsberg. While the enzyme structures have significant similarities, the Carlsberg enzyme has a broader pH-activity curve, and it retains a much greater percentage of its optimum pH activity, when the pH is reduced to three largest enzyme manufacturers, Novo Nordisk, Genencor International, and DSM have reported market shares of about 41–44, 21, and 8%, respectively, with other producers in North America, Europe, and Asia accounting for most of the remaining 27–30%. Commercial proteases from some of the major manufacturers are listed in Table 2. The subtilisin Carlsberg-type alkaline serine protease is produced by B. licheniformis, B. pumilus, and B. subtilis. Highly alkalophilic Bacillus species, such as Bacillus clausii and Bacillus halodurans, produce more highly alkaline stable enzymes used in heavy-duty detergent formulations, such as Esperase produced by Novo Nordisk. Commercial neutral proteases produced by Bacillus species have activity optima in the region of pH 7 and these are zinc metalloproteases. They have applications in milk and soy protein modification, in brewing for control of amino nitrogen, and in optimization of cereal mash extraction and chill-haze removal. Commercially important proteases of Bacillus species are typically produced constitutively, and the production is associated with the exponential and postexponential phases of 2. Examples of commercial proteases’ sources, applications, and their industrial suppliersSupplierProduct trade nameMicrobial sourceApplicationNovo Nordisk, DenmarkAlcalaseBacillus licheniformisDetergent high alkaline, high temperature, silk degumming, protein hydrolysates, meat processing, fuel alcohol fermentation enhancementBiofeed proB. licheniformisFeedDurazymBacillus lentusDetergent, food, silk degummingEverlaseBacillus spDetergent bleach stableFlavorzymeAspergillus oryzaeProtein hydrolysates mixture of exo-, endo-proteasesKannaseBacillus cold washKojizymeNot specifiedProtein hydrolysatesNeutraseB. subtilisBrewing and bakingNovoBate WBBacillus 243B. licheniformisDenture cleanersNovozyme 539HP FGenetically modified Bacillus broad specificity, hydrolyses amide, and ester bonds, enantioselective catalyst in synthesis of optically active amines, alcohols, carboxylic acids, and amines; peptide synthesisNUEBacillus liming active at pH 12–13OvozymeBacillus detergent egg inhibitor-resistantProtamexBacillus protease complexProduction of protein hydrolysates, flavor development, and meat higher pH, medium temperature, AGenetically modified Bacillus broad specificity, hydrolyses amide and ester bonds, enantioselective catalyst in synthesis of optically active amines, alcohols, carboxylic acids, and amines; peptide synthesisGenencor International, USAAcid fungal proteaseAspergillus hydrolysisFermgenBacillus fermentationsFungal proteaseAspergillus dairy-selective protein hydrolysisHT proteolyticBacillus hydrolysis high temperatureMultifect neutralBacillus hydrolysis neutral pH, wheat ethanol fermentationPrimatanBacterial sourceLeather batingProperaseBacillus high alkaline, low temperatureProtexBacillus hydrolysis alkalinePurafectB. lentusDetergent high alkaline, leather alkaline soakDSM, NLAccelerezymeNon GMOCheesemaking – flavor developmentBakeZyme B500BGBacillus B500BGAspergillus proteaseBacillus neutral proteaseFromaseRhizomucor coagulantMaxirenRecombinant Kluyveromyces lactisCheesemaking fermentation produced chymosinSuparen/SurecurdCryphonectria parasiticaCheesemaking fungal coagulantAmanoPharmaceuticals JPAcid protease AA. nigerProtein hydrolysis pH protease DSA. nigerDietary supplementCollagenaseClostridium cultureNewlase FRhizopus niveusProtein hydrolysis pH hydrolysis pH 10Protease A 2A. oryzaeProtein hydrolysis pH A-DSA. oryzaeDietary supplementProtease DSA. melliusDietary supplementProtease MA. oryzaeProtein hydrolysis pH NB. subtilisBiotransformations, protein hydrolysisProtease SB. stearothermophilusBiotransformations, protein hydrolysisProtinBacillus bating, dehairing, and silver recovery pH 10–11ProzymeAspergillus melliusDigestive aidStreptokinase/streptodornaseStreptococcus pharmaceuticalThermoaseBacillus bating, dehairing, and silver recovery pH 7– Development, USAEnzeco alkaline proteaseB. licheniformisIndustrial pH alkaline protease-L FGB. licheniformisFoodEnzeco high alkaline proteaseBacillus neutral bacterial proteaseB. subtilisFood, meat tenderizingEnzeco neutral bacterial proteaseB. licheniformisVegetable protein hydrolysis pH 6– species are attractive hosts for production of proteases for a variety of reasons. They exhibit high growth rates, which result in short fermentation cycles. Several strains of Bacillus, including B. subtilis and B. licheniformis, have GRAS status from the United States Food and Drug Administration, which means these organisms and their products are generally regarded as safe. The complete sequence of B. subtilis and a number of other Bacillus species have now been published, which is facilitating the further development and engineering of these strains and their enzyme products. Bacillus species, including B. subtilis, B. licheniformis, and B. amyloliquefaciens, have a high capacity to secrete the proteases of interest into the extracellular medium. In this regard, the identification of several genes in the B. subtilis genome, which encode proteins of the major secretion pathway, including five type-I signal peptidase genes and one type-II signal peptidase, was of special significance. Genomic analysis of the alkaliphilic B. halodurans has also been especially interesting from the perspective of producing commercial alkaline proteases. Through protein engineering techniques, it has been possible to develop commercial protease variants of the B. clausii alkaline protease to generate enzymes with improved performance for use in low-temperature washes and in bleach containing variety of molecular strategies are used for development of recombinant Bacillus strains for commercial production. Engineered versions of natural plasmids from the same organism or a closely related species are introduced into hosts using transformation, cell fusion, and electroporation approaches. Native promoters, such as the promoter of the highly efficient B. subtilis α-amylase, are often exploited. It was found that more stable clones could be developed by direct insertion of DNA into the chromosome. Antibiotic resistance strategies cannot be used in commercial enzyme production fermentations for stable plasmid maintenance, and other strategies such as incorporating the only copy of another gene required for microbial growth into the plasmid have been used. Amplification of gene copy number has generated high enzyme-producing strains. It has been suggested that the ideal production strain is a genetically stable and chromosomally integrated gene, supported by high levels of expression and a different context, the ability of Bacillus species to produce both a large variety and high quantities of extracellular proteases has presented a barrier to the use of these hosts for production of cloned foreign proteins because the proteases tend to degrade the secreted cloned proteins. As a result, strategies to use protease-deficient mutants have been employed and successfully used to produce a number of intact heterologous full chapterURL and enzymatic inactivation of prions in soil environmentsClarissa J. Booth, ... Joel A. Pedersen, in Soil Biology and Biochemistry, Degradation of PrPTSE and inactivation of prions by serine proteases from Bacillus Bacillus species produce large amounts of extracellular proteases cf. Gordon et al., 1973. Proteases with the ability to degrade PrPTSE isolated from Bacillus spp. are exclusively subtilisins or subtilisin-like proteases. Commercial subtilisin 309, a serine endopeptidase from Bacillus clausii was shown to inactivate mouse-adapted scrapie prions with a reduction in infectivity by a factor of >105 achieved after 14-h incubation at 55 °C Pilon et al., 2009. Bacillus lentus has served as a source of several subtilisin-like proteases capable of degrading PrPTSE. Properase, a commercially available variant of B. lentus subtilisin, shows the ability to degrade PrPTSE. Properase differs from the native enzyme in three positions in its primary sequence and exhibits increased thermal stability Bott, 1997. Treatment of brain homogenate from mice infected with the 301V strain of mouse-adapted BSE with Properase 30 min, 60 °C, pH 12 led to a reduction infectivity by a factor of >103 McLeod et al., 2004. Enzyme-free controls demonstrated that the pH 12 conditions themselves produced a reduction in infectivity by a factor of approximately 10, indicating that basic conditions influence prion infectivity in the absence of any biotic factors McLeod et al., 2004. Another subtilisin enzyme from B. lentus was engineered to increase thermostability Graycar et al., 1992. The resulting enzyme, MC3, exhibited the ability to inactivate TSE infectivity Dickinson et al., 2009. Brief 30 min exposure of 301V prions to MC3 60 °C, pH 12 led to a reduction in TSE infectivity by a factor of >107. This enzyme is now marketed as Prionzyme by Genencor. At pH values of 2–12 both Properase and MC3 reduced immunodetectable PrPTSE, but exhibited optimal activities at pH > 8. For both enzymes, the effect of exposure on infectivity has been examined only after incubation with at 60 °C and pH 12. Nattokinase, a subtilisin-like alkaline serine protease produced by Bacillus subtilis natto, was originally extracted from the fermented soybean product nattō. Hsu et al. 2009 examined the effect of purified nattokinase on experimentally refolded fibrils of Aβ40, insulin, and recombinant human PrP huPrP108-144. After 48-h exposure 40 °C, pH 7, fibrils of all three proteins exhibited a decrease in amyloid structure as indicated by circular dichroism spectroscopy and thioflavin T binding Vassar and Culling, 1959. The subtilisin-like serine endopeptidase MSK103, isolated from B. licheniformis, eliminated PrPTSE immunoreactivity to after 20 h at 50 °C and pH 9 Yoshioka et al., 2007a. Subsequently, exposure of hamster-adapted scrapie prions strain 237 to MSK103 in 2% SDS for 20 h at 50 °C produced a reduction in infectivity by a factor of >105 Yoshioka et al., 2007b.Read full articleURL Driks, in Molecular Aspects of Medicine, 2009The outermost structure of the B. anthracis spore is a protein shell called the exosporium. The exosporium is present in a number of species including Brevibacillus laterosporus, Bacillus megaterium, Bacillus naganoensis, Bacillus neidei, Bacillus odysseyi, Bacillus vedderi and the all members of the B. cereus-group Driks, Unpublished observations; Hannay, 1957; La Duc et al., 2004; Vary, 1994. Species lacking the exosporium include Bacillus clausii, Bacillus licheniformis, Bacillus sonorensis and B. subtilis Driks, Unpublished observations; Warth et al., 1963. In most species, the exosporium is a contiguous shell surrounding the coat and separated from it by a gap called the interspace, whose contents is still unknown. The proteins comprising the exosporium surface have received considerable attention in recent years, as these molecules are strong candidates for vaccines and ligands for spore detection Fox et al., 2003; Tournier et al., 2009. These molecules can also be expected to have important roles in interactions with the environment see below. Two exosporium-surface proteins, BclA and BclB, have been identified so far Sylvestre et al., 2002; Thompson et al., 2007; Thompson and Stewart, 2008. BclA, a collagen-like glycoprotein, is the best characterized of the two Boydston et al., 2005; Giorno et al., 2009; Steichen et al., 2003; Sylvestre et al., 2002, 2003. The C terminal domain of BclA, and anthrose, a polysaccharide residue attached to BclA, contain the immunodominant spore epitopes Mehta et al., 2006; Steichen et al., 2003.Read full articleURL microbiota A new force in diagnosing and treating pancreatic cancerZhengting Jiang, ... Dong Tang, in Cancer Letters, Intratumoral microbiota as a potential biomarker for pancreatic cancer diagnosisA significant difference was observed in the abundance of microbiota between healthy tissues and pancreatic tumors Table 1. 16S rRNA gene sequencing of some microbiota associated with pancreatic cancer revealed that Enterobacteriaceae, Pseudomonadaceae, Proteobacteria, Bacteroidetes, Firmicutes, Pseudoxanthomonas, Streptomyces, Saccharopolyspora and Bacillus clausii were significantly more abundant in pancreatic tumors, while the abundance of some other microbiota only changed outside of the tumor. This demonstrates that intratumoral microbiota may be a biomarker for the diagnosis of pancreatic cancer, and changes in intratumoral microbiota may play a vital role in the timely detection of pancreatic cancer and prediction of prognosis [56].Table 1. Changes in the abundance of microbiota in patients with pancreatic typeMicrobial characterizationAbundance changes outside the tumorAbundance changes in the tumorReferencesEnterobacteriaceae, PseudomonadaceaePancreatic tumors16S rRNA gene sequencingincreasingincreasing[7]Proteobacteria, Bacteroidetes, FirmicutesPancreatic tumors16S rRNA gene sequencingincreasingincreasing[8]Pseudoxanthomonas, Streptomyces, Saccharopolyspora, Bacillus clausiiPancreatic tumors16S rRNA gene sequencingincreasingincreasing[10]Proteobacteria, Actinobacteria, Fusobacteria, VerrucomicrobiaFecal16S rRNA gene sequencingincreasing[8]Porphyromonas, Aggregatibacter, Porphyromonas gingivalisSalivary16S rRNA gene sequencingincreasing[59]Leptotrichia, Fusobacteria, Porphyromonas, Streptococcus mitis, Neisseria elongateSalivary16S rRNA gene sequencingdecreasing[59]Table 2. Clinical trials of microbiota-associated pancreatic NumberTitleStatusConditionsInterventionsNCT03809247Microbial Diversity of Pancreatic DiseasesRecruitingPancreatic CancerPancreatic DiseaseNCT03840460A Prospective Translational Tissue Collection Study in Early and Advanced Pancreatic Ductal Adenocarcinoma and Pancreatic Neuroendocrine Tumors to Enable Further Disease Characterization and the Development of Potential Predictive and Prognostic BiomarkersRecruitingPancreatic AdenocarcinomaNCT04203459The Mechanism of Enhancing the Anti-tumor Effects of CAR-T on PC by Gut Microbiota RegulationRecruitingPancreatic CancerGut MicrobiotaCAR-TNCT04600154MS-20 on Gut Microbiota and Risk/Severity of Cachexia in Pancreatic Cancer PatientsRecruitingPancreatic CancerDrug MS-20CachexiaOther PlaceboChemotherapy EffectNCT04931069Correlation Between Complications After Pancreaticoduodenectomy and MicrobiotaRecruitingPancreatic CancerOther Microbiota analysisNCT04975217Fecal Microbial Transplants for the Treatment of Pancreatic CancerRecruitingPancreatic Ductal AdenocarcinomaProcedure Fecal Microbiota TransplantationDrug Fecal Microbiota Transplantation CapsuleOther Questionnaire Administration and 2 more …NCT04993846Pancreatic Cancer and Oral MicrobiomeRecruitingOral MicrobiomeDiagnostic Test Dental plaque samplingPancreatic CancerIPMNDiagnostic Test qPCRParodontopathyNCT05193162Retrospective Study on Microbial Diversity in Paraffin Tissue of Pancreatic DiseasesRecruitingPancreatic CancerOther No any interventionPancreatic DiseaseMicrobial ColonizationNCT05271344Oral Immunonutrition With Synbiotics, Omega 3 and Vitamin D in Patients Undergoing Duodenopancreatectomy for Tumoral LesionRecruitingPancreatic CancerDietary Supplement Nutritional ProductsComplication, PostoperativeSurgery1Intratumoral microbiota is used for the early detection of pancreatic cancer. The intestinal tract, oral cavity, and NAT are the primary potential sources of the intratumoral microbiota. Of these, oral microbiota derived from saliva samples are the most readily available and are used as biomarkers for noninvasive detection [57]. Compared to healthy controls, in pancreatic cancer patients, the salivary levels of Porphyromonas, Leptrichina, Streptococcus and Leptospira significantly increased, while the levels of Neisseria and Veillonella decreased [58]. Using 16S rRNA sequencing of saliva samples from 361 pancreatic adenocarcinomas and 371 matched controls, the researchers found that Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis can increase the risk of pancreatic cancer and Fusobacteria and its genus Leptotrichia decreased this risk [59]. Additionally, Neisseria mucosa and Fusobacterium periodonticum are associated with a risk of developing pancreatic cancer [60]. Therefore, intratumoral microbiota originating from the oral cavity may be a critical target for the early diagnosis of pancreatic cancer. However, not all oral microbiota can translocate into pancreatic tumors, and the link between changes in the oral microbiota and pancreatic tumor microbiota requires further investigation. Moreover, the abundance of Actinobacteria, Proteobacteria and Firmicutes and the levels of their metabolites including acetate and butyrate in the feces of pancreatic cancer patients were significantly lower than those in normal people. This was demonstrated to be the basis for the early detection of pancreatic cancer [61]. The microbiota in feces originates from the intestinal tract, which is also a potential microbiota source in pancreatic tumors, and the development of pancreatic cancer causes changes in the gut microbiota to manifest in feces [62]. Further investigation is required to determine whether changes in intratumoral microbiota can be demonstrated by detecting microbiota in feces and using this as a potential biomarker for diagnosing pancreatic cancer. Notably, the accuracy of oral and fecal microbiota as diagnostic markers for detecting pancreatic cancer is yet to be assessed [63]. Intratumoral microbiota may have higher accuracy in the timely detection of pancreatic microbiota is used to determine the prognosis of pancreatic cancer patients. Using 16SrRNA sequencing to compare DNA samples from pancreatic cancer patients with different survival outcomes, long-term survivors with an overall survival rate of over five years contained a richer variety of intratumoral microbiota than short-term survivors [10]. Among them, Bacillus clausii, Saccharopolyspora, Streptomyces and Pseudoxanthomonas are strongly associated with the long-term survival of patients, and the abundance of these bacteria is upregulated in long-term survivors [10]. Compared with healthy controls, the abundance of Fusobacterium is significantly increased in pancreatic tumors, which correlates with a shorter survival time in patients [64]. The convincing power of this experiment would be further enhanced if the abundance of Fusobacterium in pancreatic tumors of long-term survivors were compared with that of short-term survivors. These data suggest that intratumoral microbiota acts as a potential biomarker for determining the prognostic status of pancreatic cancer. Intratumoral microbiota is potentially valuable for increasing the accuracy and convenience of prognostic screening in patients with pancreatic full articleURL and derivatives hydrogels in encapsulation of probiotic bacteria An updated reviewNarmin Nezamdoost-Sani, ... Amin Mousavi Khaneghah, in Food Bioscience, GelatinThe microspheres made of gelatin alone are physically fragile and talented to rapid enzymatic digestive decomposition Nawong, Oonsivilai, Boonkerd, & Hansen, 2016.L. plantarum SC01 extracted from traditional Vietnamese yogurt entrapped in alginate-gelatin increased the percent of antibacterial activities seen in bacteriocin, which became very active during treatment at 80 °C applying the surfactant EDTA also was unaffected with pH N. T. T. Le et al., 2019.The hydrogel of bilayer encapsulation of gelatin and alginate gels guarantees the survival of probiotic strains comprising Bacillus clausii, L. acidophilus, and Saccharomyces boulardii increased considerably. This technique improved protection for probiotics than monolayer encapsulation. The cell density of these three probiotics stayed constant until 120 min after double encapsulation, which improved cell viability significantly H. D. Le & Trinh, 2018.An intelligent hydrogel of gelatin-graphene oxide nanocomposite was used to encapsulate Kluyveromyces lactis. Their swelling capacity strongly depended on pH, with the highest resistance and expansion at low pH values. Rheological and mechanical properties showed sufficient stability after performing the desired treatments. Finally, the nanocomposite allows the viability of probiotic cells to reach 73% and 54%, respectively, after 72 h of bioreactor operation and sequential exposure to gastrointestinal tract simulated media Patarroyo et al., 2021.The confinement of Bifidobacterium longum in the dual gel network of fish gelatin/sodium alginate as an effective barrier resulted in the targeted liberation of probiotics, especially their survival in the gastrointestinal system. Encapsulated probiotics showed high viability above 15% in simulated gastric juice. Fish gelatin can help to improve the strength and stiffness of the lattice structure via electrostatic interactions and durable intermolecular hydrogen linkages between the carboxylate group -COO- in the sodium alginate and the cationic amine group -NH3+ in fish gelatin J. Liu, Chen, et al., 2021.Read full articleURL in upstream and downstream strategies of pectinase bioprocessing A reviewJuliana John, ... Padmanaban Velayudhaperumal Chellam, in International Journal of Biological Macromolecules, Bacterial pectinasesThey serve as efficient producers of pectinase in industries. Among the wide diversity of bacterial genera available for enzyme production, Bacillus and Erwinia are the two most efficient producers of bacterial pectinases. As they are easy to handle and environmentally friendly, they prevail as predominant workhorses in microbial fermentations. A strain of Bacillus. licheniformis isolated from cassava waste dump site served as an efficient pectinase producer under submerged fermentation and showed increased yield when the conditions were optimised [17]. Though many bacterial strains are mesophilic, some extremophiles produce alkali stable as well as thermo stable pectinases which can operate at processes occurring at high alkaline conditions as well as high temperatures finding huge industrial applications. An alkaliphilic strain of Bacillus clausii isolated from soda lake in China produced a thermo alkaline pectate lysase which had a very high degumming efficiency towards ramie and it provided maximum yield and activity even at 70 °C and at pH [24]. Another thermoactive pectate lyase produced by Bacillus pumilus strain has also been reported by de los Milagros Orbera Raton et al. [25] exhibited maximal activity at 75 °C, pH and it finds its application in fibre degumming. A strain of Bacillus licheniformis UNP-1 isolated by Pathak and Jadhav [26] found to produce a thermo-pH stable pectinase which has potential applications in the biotechnological industries in future. Another novel alkali stable pectate lyase was also produced by Bacillus subtilis isolated from flue-cured tobacco leaves and their enzymes retained their activities even at pH and 50 °C [27]. Ahlawat et al. [28] also reported the production of a pectinase by using Bacillus subtilis and this enzyme showed wide range of pH and thermal stability and thus it can be used in processes involved in paper and pulp industries. An alkaliphilic strain of Bacillus pumilus BK2 was isolated by Klug-Santner et al. [10] had high activity and applicable in bioscouring of full articleURL of microbiome changes on endocrine ghrelin signaling – A systematic reviewMartha A. Schalla, Andreas Stengel, in Peptides, ProbioticsThe probiotic supplement VSL3™ contains Lactobacillus and Bifidobacterium. It was tested in a 16-week, randomized, placebo-controlled trial which showed that VSL3™ acts obesogenic [63]. Obese Hispanic adolescents receiving the supplement exhibited an increase in adiposity and fat mass; however, ghrelin levels and overall composition of gut microbiomes or individual microbiomes were not affected [63]. The use of spore-based probiotic supplements containing Bacillus indicus, Bacillus subtilis, Bacillus coagulans, Bacillus licheniformis and Bacillus clausii seems more promising. In subjects with increased postprandial serum endotoxin concentrations, likely associated with increased gastrointestinal permeability and dysbiosis, the spore-based probiotic supplement decreased postprandial endotoxins and triglycerides as well as serum ghrelin after daily supplementation for 30 days compared to before supplementation, giving rise to a restored post-prandial ghrelin response and an improvement in post-prandial hunger/satiety control; however, no significant effect on body weight was detected [64], which was, as the authors suggest, likely due to the short time period of the significance of SCFA alterations on ghrelin concentration was also corroborated by a study investigating probiotic Bifidobacterium lactis V9 in patients with polycystic ovary syndrome PCOS. Bifidobacterium lactis V9 induced an increase in intestinal SCFAs including the levels of acetic acid, propionic acid, butyric acid and valeric acid [65]. In subjects where B. lactis V9 survived in the gut =responders, assessed by fecal sample analysis it increased the fecal abundances of the genera Bifidobacterium, Faecalibacterium, Butyricimonas and Akkermansia and decreased fecal abundance of rRNA of the genera Collinsella, Coprococcus, Klebsiella, Clostridium, Actinomyces, Streptococcus, Eubacterium and Ochrobactrum [65]. Moreover, 10 weeks of oral B. lactis V9 supplementation increased circulating ghrelin levels in responders [65]. As a consequence the authors suggested that the consumption of Bifidobacterium lactis V9 promotes the growth of SCFA-producing microbes and that increased levels of SCFAs in turn impact on the secretion of ghrelin assumedly via SCFA receptors on enteroendocrine cells as already shown for PYY and GLP-1 [65]. Since these parameters were not studied in healthy controls, a study in healthy volunteers should be added to reduce the number of possible confounding factors. Moreover, the relevance of Bifidobacterium lactis V9 supplementation on body weight in relation to ghrelin remains to be further full articleURL
For example, the Bacillus clausii metE gene, which encodes a B12-independent form of methionine synthase, is regulated by tandem S box and B12 Comprehensive Natural Products II, 2010BACILLUS IntroductionI. Jenson, in Encyclopedia of Food Microbiology Second Edition, 2014ProbioticsBacillus species are sometimes used as probiotics in both animals and humans. Bacillus subtilis, Bacillus clausii, B. cereus, B. coagulans, and B. licheniformis have been the most extensively examined. It is clear that few scientific studies have been performed on the potential of these species as probiotics, especially compared with the application of lactic acid bacteria. Bacillus have the obvious advantage over other potential probiotics that they can be produced efficiently and cost effectively by drying and survive well through shelf life. They also will survive gastric acidity and survive into the bowel, the reputed site of action. At least some strains are able to germinate and reproduce in the human gastrointestinal tract. A number of products are registered for human use and also for animal use pigs, poultry, calves, aquaculture. Most products on the market do not have extensive clinical trial data. Claims often relate to extragastrointestinal effects, such as alleviation of allergy symptoms and rheumatoid arthritis symptoms, but claims for gastrointestinal efficacy are made for some products. The mechanisms by which bacilli may be effective as probiotics is not known. Some strains have been shown to produce extracellular is a B. subtilis–fermented soybean product, native to Japan, for which health benefits often have been ascribed. It is popular as a breakfast food. Natto has a strong odor and flavor and a viscous, stringy texture. In part, this is due to the production of a cell capsule of poly-γ-glutamic acid in stationary phase. Some B. cereus probiotic products are produced from strains that produce enterotoxin or at least contain enterotoxin full chapterURL of BIOVIA Materials Studio, LAMMPS, and GROMACS in Various Fields of Science and EngineeringSumit Sharma, ... Rakesh Chandra, in Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs, Applications of GROMACSThe following paragraphs will explain the utility of GROMACS in various areas. Padmanabhan et al. [18] explored an eco-friendly method for the production of silver nanoparticles from Bacillus clausii cultured from Enterogermina. Along with the biosynthesis and conformity test, in silico studies were done on nicotinamide adenine dinucleotide phosphate NADPH-dependent nitrate reductase enzymes from the viewpoint of designing a rational enzymatic strategy for the synthesis. The detailed characterization of the nanoparticles was carried out using UV-vis spectroscopy, dynamic light scattering DLS particle size analysis, transmission electron microscopy TEM, and x-ray diffraction XRD analysis. Computational profiling and in silico characterization of NADH-dependent enzymes were carried out based on literature. Nitrate reductase sequence was retrieved from National Center for Biotechnology Information NCBI for characterization. Secondary structure was evaluated and verified by JPred and Self-Optimized Prediction Method with Alignment SOPMA tool. Tertiary structure was also modeled by MODELLER and Iterative Threading ASSEmbly Refinement I-TASSER parallel, and the best structure was selected based on energy values. Structure validation was done by GROMACS, and root-mean-square deviation RMSD, root-mean-square fluctuation RMSF, and temperature variation plot were also plotted. Interaction graphs between nitrate reductase and ligand silver nitrate were done through molecular docking using et al. [19] provided a data package of GROMACS input files for atomistic MD simulations of multicomponent, asymmetrical lipid bilayers using the optimized potentials for liquid simulations-all atom OPLS-AA force field. The data included 14 model bilayers composed of eight different lipid molecules. The lipids present in these models were cholesterol CHOL, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine POPE, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine SOPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine POPS, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine SOPS, N-palmitoyl-d-erythro-sphingosyl-phosphatidylcholine SM16, and N-lignoceroy l-d-erythro-sphingosyl-phosphatidylcholine SM24. The bilayers' compositions were based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. [20], showing an increase in the section of long-tail lipid species SOPS, SOPE, and SM24 in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet was composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet was composed of SM, PC, and cholesterol discussed in Van Meer et al. [21]. The provided data include lipids' topologies, equilibrated structures of asymmetrical bilayers, all force field parameters, and input files with parameters describing simulation conditions The data were associated with the research article by Róg et al. [22].Róg et al. [23] provided topologies and force field parameter files for MD simulations of lipids in the OPLS-AA force field using the GROMACS package. This was the first systematic parameterization of lipid molecules in this force field. Topologies were provided for four phosphatidylcholines saturated dipalmitoylphosphatidylcholine DPPC, mono-cis-unsaturated POPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine DOPC, and mono-trans-unsaturated phosphoenolpyruvate carboxylase PEPC. Parameterization of the phosphatidylcholines was achieved in two steps first the authors supplemented the OPLS force field parameters for DPPC with new parameters for torsion angles and van der Waals parameters for the carbon and hydrogen atoms in the acyl chains and new partial atomic charges and parameters for torsion angles in the phosphatidylcholine and glycerol moieties [24]. Next, parameters were derived for the cis- and transdouble bonds and the neighboring single bonds [25]. Additionally the authors provided GROMACS input files with parameters describing simulation conditions which were strongly recommended to be used with these lipid models. The data were associated with the research article by Kulig et al. [25] and provided as supporting the study by Lemkul [26], users are provided the rationale and a theoretical explanation for the command-line syntax in each step in the online tutorials available at and the underlying settings and algorithms necessary to perform robust MD simulations in each full chapterURL in Biomedical ResearchK. Mikawlrawng, in New and Future Developments in Microbial Biotechnology and Bioengineering, 2016ProbioticsIt is a well established fact that some intestinal microfloras perform several important functions including metabolic, trophic, and protective ones for the body. Probiotics are formulations of live microbial cells such as Bacillus clausii, Lactobacillus, and Bifidobacterium that contribute to intestinal microbial balance. Probiotics play a vital role in directly maintaining gastrointestinal microbial balance in particular, and increasing the immunity of the entire body in general. Their benefits to human and animal health have been proven in countless scientific researches. Probiotics literally means “for life,” and they are microorganisms that are associated with benefical effects for humans and animals. Regular consumption of food containing probiotic microorganisms is recommended for establishment of a positive balanced population of useful or beneficial intestinal flora. They play an important role in the protection of the organism against harmful microbes and also strengthen the immune system of the host. Probiotics are also usually consumed after antibiotic therapy, the result of which may have destroyed beneficial microbial flora of the digestive tract. However, those probiotic formulations containing some Bacillus species are recommended for use along with antibiotics since these strains eg, B clausii are resistant to antibiotics Coppi et al., 1985. Generally, the probiotic formulations consist mostly of the strains of the genera Bacillus, Lactobacillus, and Bifidobacterium, but reports are now available about the use of other strains of bacteria such as Enterococcus and Streptococcus, and even fungi such as Aspergillus and Saccharomyces Fox, 1988. With the advancement in understanding of the ecology of gastrointestinal microbes and their roles it can be speculated that more desirable microbes from fungi will join the list of full chapterURL to Polyphenolic Compounds Modulates Type 1 Diabetes The Case of GenisteinGuannan Huang, ... Tai L. Guo, in Polyphenols Mechanisms of Action in Human Health and Disease Second Edition, ProbioticsProbiotics are defined as “mono- or mixed cultures of live microorganisms that can beneficially affect the host by improving the properties of the indigenous microflora” [99]. Common probiotic components include Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Bacillus clausii, Lactobacillus acidophilus, Lactobacillus GG, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus bulgaricus, and Streptococcus thermophiles [100]. In a prospective cohort study, probiotic supplementation at the age of 0–27 days in infants was associated with a decreased risk of islet autoimmunity comparing with probiotic supplementation after 27 days [101]. One study performed in NOD mice found that the oral probiotic VSL3 can effectively prevent T1D while inducing antiinflammatory IL-10 production [102]. Similarly, in another study, oral administration of VSL3 in NOD mice prevented T1D by inhibiting IL-1β expression and releasing components of inflammasome [103]. Moreover, by orally transferring Lactobacillus johnsonii strain from Biobreeding diabetes-resistant rats to BB-DP rats, a study found that the probiotics conferred T1D protection in diabetes-prone rats through enhanced Th17 differentiation [104]. In addition, it was reported that the combinatorial use of probiotics and vitamin C could effectively reduce BGL more than vitamin C alone in an alloxan-induced Wistar rat model [105].Read full chapterURL Ward, ... A. Kulkarni, in Encyclopedia of Microbiology Third Edition, 2009Bacillus Protease ProductionEnzymes produced by Bacillus species represent about 50% of the total enzyme market with the Bacillus alkaline serine proteases subtilisins being the single most dominant commercial enzyme because of its application in household detergents. The most important commercial serine alkaline protease, subtilisin Carlsberg, produced by B. licheniformis, consists of a single peptide chain with 274 amino acid residues, contains no cysteine amino acids, and consequently has no disulfide bonds. This enzyme is also produced by Bacillus pumilus. Another Bacillus serine alkaline protease, subtilisin BPN, produced by B. amyloliquefaciens, B. subtilis, and B. stearothermophilus has little commercial significance compared with subtilisin Carlsberg. While the enzyme structures have significant similarities, the Carlsberg enzyme has a broader pH-activity curve, and it retains a much greater percentage of its optimum pH activity, when the pH is reduced to three largest enzyme manufacturers, Novo Nordisk, Genencor International, and DSM have reported market shares of about 41–44, 21, and 8%, respectively, with other producers in North America, Europe, and Asia accounting for most of the remaining 27–30%. Commercial proteases from some of the major manufacturers are listed in Table 2. The subtilisin Carlsberg-type alkaline serine protease is produced by B. licheniformis, B. pumilus, and B. subtilis. Highly alkalophilic Bacillus species, such as Bacillus clausii and Bacillus halodurans, produce more highly alkaline stable enzymes used in heavy-duty detergent formulations, such as Esperase produced by Novo Nordisk. Commercial neutral proteases produced by Bacillus species have activity optima in the region of pH 7 and these are zinc metalloproteases. They have applications in milk and soy protein modification, in brewing for control of amino nitrogen, and in optimization of cereal mash extraction and chill-haze removal. Commercially important proteases of Bacillus species are typically produced constitutively, and the production is associated with the exponential and postexponential phases of 2. Examples of commercial proteases’ sources, applications, and their industrial suppliersSupplierProduct trade nameMicrobial sourceApplicationNovo Nordisk, DenmarkAlcalaseBacillus licheniformisDetergent high alkaline, high temperature, silk degumming, protein hydrolysates, meat processing, fuel alcohol fermentation enhancementBiofeed proB. licheniformisFeedDurazymBacillus lentusDetergent, food, silk degummingEverlaseBacillus spDetergent bleach stableFlavorzymeAspergillus oryzaeProtein hydrolysates mixture of exo-, endo-proteasesKannaseBacillus cold washKojizymeNot specifiedProtein hydrolysatesNeutraseB. subtilisBrewing and bakingNovoBate WBBacillus 243B. licheniformisDenture cleanersNovozyme 539HP FGenetically modified Bacillus broad specificity, hydrolyses amide, and ester bonds, enantioselective catalyst in synthesis of optically active amines, alcohols, carboxylic acids, and amines; peptide synthesisNUEBacillus liming active at pH 12–13OvozymeBacillus detergent egg inhibitor-resistantProtamexBacillus protease complexProduction of protein hydrolysates, flavor development, and meat higher pH, medium temperature, AGenetically modified Bacillus broad specificity, hydrolyses amide and ester bonds, enantioselective catalyst in synthesis of optically active amines, alcohols, carboxylic acids, and amines; peptide synthesisGenencor International, USAAcid fungal proteaseAspergillus hydrolysisFermgenBacillus fermentationsFungal proteaseAspergillus dairy-selective protein hydrolysisHT proteolyticBacillus hydrolysis high temperatureMultifect neutralBacillus hydrolysis neutral pH, wheat ethanol fermentationPrimatanBacterial sourceLeather batingProperaseBacillus high alkaline, low temperatureProtexBacillus hydrolysis alkalinePurafectB. lentusDetergent high alkaline, leather alkaline soakDSM, NLAccelerezymeNon GMOCheesemaking – flavor developmentBakeZyme B500BGBacillus B500BGAspergillus proteaseBacillus neutral proteaseFromaseRhizomucor coagulantMaxirenRecombinant Kluyveromyces lactisCheesemaking fermentation produced chymosinSuparen/SurecurdCryphonectria parasiticaCheesemaking fungal coagulantAmanoPharmaceuticals JPAcid protease AA. nigerProtein hydrolysis pH protease DSA. nigerDietary supplementCollagenaseClostridium cultureNewlase FRhizopus niveusProtein hydrolysis pH hydrolysis pH 10Protease A 2A. oryzaeProtein hydrolysis pH A-DSA. oryzaeDietary supplementProtease DSA. melliusDietary supplementProtease MA. oryzaeProtein hydrolysis pH NB. subtilisBiotransformations, protein hydrolysisProtease SB. stearothermophilusBiotransformations, protein hydrolysisProtinBacillus bating, dehairing, and silver recovery pH 10–11ProzymeAspergillus melliusDigestive aidStreptokinase/streptodornaseStreptococcus pharmaceuticalThermoaseBacillus bating, dehairing, and silver recovery pH 7– Development, USAEnzeco alkaline proteaseB. licheniformisIndustrial pH alkaline protease-L FGB. licheniformisFoodEnzeco high alkaline proteaseBacillus neutral bacterial proteaseB. subtilisFood, meat tenderizingEnzeco neutral bacterial proteaseB. licheniformisVegetable protein hydrolysis pH 6– species are attractive hosts for production of proteases for a variety of reasons. They exhibit high growth rates, which result in short fermentation cycles. Several strains of Bacillus, including B. subtilis and B. licheniformis, have GRAS status from the United States Food and Drug Administration, which means these organisms and their products are generally regarded as safe. The complete sequence of B. subtilis and a number of other Bacillus species have now been published, which is facilitating the further development and engineering of these strains and their enzyme products. Bacillus species, including B. subtilis, B. licheniformis, and B. amyloliquefaciens, have a high capacity to secrete the proteases of interest into the extracellular medium. In this regard, the identification of several genes in the B. subtilis genome, which encode proteins of the major secretion pathway, including five type-I signal peptidase genes and one type-II signal peptidase, was of special significance. Genomic analysis of the alkaliphilic B. halodurans has also been especially interesting from the perspective of producing commercial alkaline proteases. Through protein engineering techniques, it has been possible to develop commercial protease variants of the B. clausii alkaline protease to generate enzymes with improved performance for use in low-temperature washes and in bleach containing variety of molecular strategies are used for development of recombinant Bacillus strains for commercial production. Engineered versions of natural plasmids from the same organism or a closely related species are introduced into hosts using transformation, cell fusion, and electroporation approaches. Native promoters, such as the promoter of the highly efficient B. subtilis α-amylase, are often exploited. It was found that more stable clones could be developed by direct insertion of DNA into the chromosome. Antibiotic resistance strategies cannot be used in commercial enzyme production fermentations for stable plasmid maintenance, and other strategies such as incorporating the only copy of another gene required for microbial growth into the plasmid have been used. Amplification of gene copy number has generated high enzyme-producing strains. It has been suggested that the ideal production strain is a genetically stable and chromosomally integrated gene, supported by high levels of expression and a different context, the ability of Bacillus species to produce both a large variety and high quantities of extracellular proteases has presented a barrier to the use of these hosts for production of cloned foreign proteins because the proteases tend to degrade the secreted cloned proteins. As a result, strategies to use protease-deficient mutants have been employed and successfully used to produce a number of intact heterologous full chapterURL Pacifici, ... Claes Ohlsson, in Marcus and Feldman's Osteoporosis Fifth Edition, Effects of probiotics on bone mass in rodentsProbiotic is defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host” [58] One important advantage of using probiotic treatment compared with the GF mouse model when evaluating the role of the GM for adult bone metabolism is that no developmental effects might confound the findings. Probiotic treatments changes composition and/or metabolic activity in an already present GM. A large number of studies have evaluated the role of probiotic treatments in different rodent bone disease models as well as in healthy gonadal intact rodents and these studies, which in general have reported beneficial effects of probiotic treatment on skeletal health, will be summarized in this section [43,57,59–74]. Ovariectomized rodent modelsThe rapid bone loss caused by the pronounced drop in estradiol levels during menopause contributes to the lower bone mass and higher risk of fractures in women compared with men [75,76]. Current available approved osteoporosis medications have postmenopausal osteoporosis as a main indication. The rodent ovariectomy ovx-model is a well-established animal model of postmenopausal et al. was the first to show in a preventive study that probiotics can protect from ovx-induced bone loss in mice [64]. The ovx-mice were treated with either a single Lactobacillus paracasei or a mix of L. paracasei and Lactobacillus plantarum. Both treatments protected the mice from ovx-induced bone loss, and this was associated with decreased expression of inflammatory cytokines and increased frequency of regulatory T cells in the bone marrow. Shortly after this study, an independent study by Britton et al. confirmed that probiotics has the capacity to protect mice from ovx-induced bone loss [60]. These authors demonstrated that preventive treatment with Lactobacillus reuteri protected mice from ovx-induced bone loss associated with decreased osteoclastic gene expression in the bone marrow. Sex steroid deficiency increases intestinal permeability causing inflammation that can lead to bone loss [43,77]. In an elegant study by Li et al. it was demonstrated that treatment with Lactobacillus rhamnosus GG or the combination of probiotic strains known as VSL3 protected from ovx-induced bone loss associated with a protection from increased intestinal permeability, suggesting that probiotics at least partly may protect from ovx-induced bone loss via a modulation of the intestinal permeability and thereby inflammation [43] Fig. Moreover, Lactobacillus acidophilus treatment protected mice from ovx-induced bone loss by decreasing inflammatory cytokines and increase regulatory T cells in both bone marrow and spleen [72]. Besides treatment with several different Lactobacillus strains, both Bacillus clausii and Bifidobacterium longum, have been reported to protect rodents from ovx-induced bone loss [63,64,67,68,71,73,74]. Collectively, these studies clearly demonstrate that probiotic treatments have the capacity to protect female rodents from ovx-induced bone loss. Currently, it has not been reported if probiotics may also protect male rodents from castration-induced bone Healthy gonadal intact rodentsThe effect of probiotics on the skeleton has also been investigated in healthy gonadal intact female and male rodents. McCabe et al. was the first to show that probiotic treatment, using L. reuteri, increased the trabecular bone mass in femur and vertebra in healthy gonadal intact male but not female mice [59]. The increased bone mass in male mice was associated with decreased intestinal inflammation. Collins et al. demonstrated that the positive effects of L. reuteri on bone mass in healthy gonadal intact male mice is dependent on lymphocytes [78]. Two other studies support that treatment with certain Lactobacillus strains does not increase bone mass in healthy gonadal intact female mice [60,64]. In contrast, treatment with L. rhamnosus GG was in another study shown to increase trabecular bone mass in both femur and spine in healthy gonadal intact female mice [43]. In a subsequent study it was reported that the increased trabecular bone mass by L. rhamnosus GG treatment was associated with increased intestinal production of the SCFA butyrate. Butyrate diffuses to the bone marrow where it increases the number of regulatory T cells. This lineage stimulates the production of the osteogenic Wnt ligand Wnt10b by CD8+ T cells. Wnt10b activates Wnt signaling in osteoblastic cells, thus stimulating bone formation in healthy gonadal intact female mice [79]. Taken together, the effect of Lactobacillus on bone mass in healthy gonadal intact mice might be strain dependent, and it is also possible that the animal facility or the genetic background of the mouse strain used might contribute to the conflicting results regarding the effects of different probiotic treatments on bone mass in healthy gonadal intact Inflammation-induced bone lossPerturbations in the GM homeostasis can be caused by pathogens, antibiotic treatment, and diet causing inflammation, tissue destruction and dysbiosis that may lead to disease development [80]. Perturbed microbial composition has been postulated to be involved in a range of inflammatory conditions, within and outside the gut, including inflammatory bowel diseases, rheumatoid arthritis RA, multiple sclerosis, food allergies, eczema, and asthma as well as obesity and the metabolic syndrome [23,24]. Low-grade inflammation has been reported to affect physiological bone turnover and play a role in pathological skeletal conditions such as osteoporosis [81–84]. Furthermore, gut-associated inflammatory and autoimmune conditions have been associated with low bone mass [85,86]. Recently, the protective capacity of probiotic treatments for bone health in inflammation-induced bone loss has been evaluated in different rodent disease models. In one study, L. reuteri increased bone mass in female mice that were subjected to dorsal skin incision to induce a chronic inflammation [61]. Treatment with L. reuteri was also shown to prevent type 1 diabetes induced bone loss in male mice by increasing Wnt10b expression [62]. The autoimmune disease RA is associated with severe bone destructions. Treatment with Lactobacillus casei in adjuvant-induced arthritis in rats partly protected against the inflammation-induced bone loss and this protective effect was associated with decreased inflammatory cytokine levels in serum [87]. Taken together, available evidence indicate that at least certain Lactobacillus strains have the capacity to protect rodents from inflammation-induced bone Probiotics modulates the effects of medications on bone health in rodentsOne may hypothesize that different prescribed medications may exert their positive or negative effects on bone health via different GM dependent mechanisms and some recent studies support this notion Fig. Glucocorticoids GCs are immune-modulating drugs with severe side effects, including GC-induced osteoporosis. It was recently shown in a groundbreaking study that GCs treatment in mice alters the GM composition [88]. Importantly, depletion of the GM by broad spectrum antibiotics prevented the GC-induced bone loss, demonstrating that the GM is crucial for mediating GC-induced bone loss. Interestingly, treatment with L. reuteri prevented from GC-induced bone loss by protecting from increased intestinal permeability and increased apoptosis of osteoblasts and osteocytes. Severe bone loss is associated with the antiretroviral agent tenofovir disoproxil fumarate TDF which has been widely used as a first-line treatment of human immunodeficiency virus HIV and hepatitis B virus HBV infections worldwide [89] TDF plays an antiretroviral role by inhibiting adenine analog reverse transcription and improves the survival of patients with HIV or HBV [90]. However, TDF treatment is associated with substantially increased bone resorption and bone loss that is larger compared with other anti-HIV agents [91,92]. Recently, it was shown in a mouse model that L. rhamnosus GG prevented TDF-induced bone loss, and this protection was associated with increased intestinal barrier integrity, expanded regulatory T cells, decreased Th17 cells, and downregulated osteoclastogenesis-related cytokines in the bone marrow, spleen, and gut in the TDF treated mice [89]. In a study by Schepper et al., they evaluated the postantibiotic effects on bone and found that mice that were treated with L. reuteri or a mucus supplement were protected from postantibiotic bone loss by preventing from increased intestinal permeability [57]. These three recent important studies demonstrate that probiotic treatment has the capacity to prevent medication-induced bone loss involving the GM and future clinical studies should determine if GCs and/or TDF regulate the human GM composition and if the deleterious effects of GCs and TDF on bone health might be avoided by specific probiotic as recently described for the first-line medication for treatment of type 2 diabetes metformin, the GM might also contribute to the beneficial bone effects of the different available osteoporosis treatments [93]. Metformin was reported to alter the gut microbiome of individuals with treatment-naïve type 2 diabetes, contributing to the therapeutic effect of the drug. It was first demonstrated in descriptive studies that metformin altered the GM composition in humans and subsequent functional studies, using fecal transplantation from metformin-treated donors to GF mice, revealed that metformin treatment of the donors improved the glucose tolerance in the recipient mice [93]. Intermittent treatments with PTH analogs are approved for osteoporosis treatment, and in a recent report, it was demonstrated that the GM is permissive for the bone anabolic effect of intermittent PTH treatment in mice [94]. In that study, it was shown that intermittent PTH does not increase bone mass in GF mice or mice with the depletion of GM using broad spectrum antibiotics. Subsequent mechanistic studies revealed that the GM produces permissive butyrate acting on GPR43 to enable intermittent PTH to increase Treg cells and thereby bone formation [94]. Thus there is now data from animal studies that at least some of both the negative and positive effects of different medications on bone health are mediated via or dependent on the GM. Future human translational studies are clearly warranted to determine if the effect of different medications on bone health is dependent or mediated via the GM also in full chapterURL on bacterial secretomes enlighten research on Mycoplasma secretomeMuhammad Zubair, ... Aizhen Guo, in Microbial Pathogenesis, Bacillus clausii secretomeDifferential secretome among bacterial strains helps to indicate the virulent properties associated with specific strain such as Bacillus clausii probiotic strains [9]. Many pathogenic bacterial secretome has been probed and found crucial virulence or pathogenesis related factors that can be the source of diagnostic markers or candidate for effective vaccine development. Rather than the numbers of studies that have been conducted in this field, the investigation of secretome at molecular level remains in need. Whereas the identification of various secreted proteins and their pathogenic functions including cell interaction, adhesion, invasion, apoptosis and/or inflammatory response might add a great progress in this field. Such kind of studies may lead to the discovery of novel antigens that might be useful as diagnostic markers, vaccine and drug full articleURL regulation RNA special issueRebecca L Coppins, ... Eduardo A Groisman, in Current Opinion in Microbiology, 2007New riboswitch architecturesThe vast majority of riboswitches sense single metabolites to modulate gene expression. However, Breaker's laboratory [15••] has now provided the first examples of mRNAs harboring two riboswitches in tandem in their 5’-UTR regions, each responding to a different metabolite Figure 1. They demonstrated that the metE mRNA from Bacillus clausii has, in its 5′-region, two distinct riboswitches one responding to S-adenosylmethionine and another responding to coenzyme B12 [15••]. Because these two ligands can independently repress metE expression, the tandem riboswitch arrangement is proposed to function as a Boolean NOR gate that inhibits the production of the MetE protein whenever S-adenosylmethionine or coenzyme B12 are present [15••]. The ability to control metE expression in response to these two metabolites is conserved in E. coli, but through the traditional’ protein binding to S-adenosylmethionine and coenzyme B12. In addition, the Breaker laboratory reports the results of a genomic analysis predicting the existence of other mRNAs with tandem riboswitches, some of which are suggested to respond to different undefined ligands. These results indicate that extant bacterial species often rely on sophisticated RNA-based sensors to integrate multiple signals into the decision to express particular gene products, which had been the province of protein full articleURL microbiota A new force in diagnosing and treating pancreatic cancerZhengting Jiang, ... Dong Tang, in Cancer Letters, Intratumoral microbiota as a potential biomarker for pancreatic cancer diagnosisA significant difference was observed in the abundance of microbiota between healthy tissues and pancreatic tumors Table 1. 16S rRNA gene sequencing of some microbiota associated with pancreatic cancer revealed that Enterobacteriaceae, Pseudomonadaceae, Proteobacteria, Bacteroidetes, Firmicutes, Pseudoxanthomonas, Streptomyces, Saccharopolyspora and Bacillus clausii were significantly more abundant in pancreatic tumors, while the abundance of some other microbiota only changed outside of the tumor. This demonstrates that intratumoral microbiota may be a biomarker for the diagnosis of pancreatic cancer, and changes in intratumoral microbiota may play a vital role in the timely detection of pancreatic cancer and prediction of prognosis [56].Table 1. Changes in the abundance of microbiota in patients with pancreatic typeMicrobial characterizationAbundance changes outside the tumorAbundance changes in the tumorReferencesEnterobacteriaceae, PseudomonadaceaePancreatic tumors16S rRNA gene sequencingincreasingincreasing[7]Proteobacteria, Bacteroidetes, FirmicutesPancreatic tumors16S rRNA gene sequencingincreasingincreasing[8]Pseudoxanthomonas, Streptomyces, Saccharopolyspora, Bacillus clausiiPancreatic tumors16S rRNA gene sequencingincreasingincreasing[10]Proteobacteria, Actinobacteria, Fusobacteria, VerrucomicrobiaFecal16S rRNA gene sequencingincreasing[8]Porphyromonas, Aggregatibacter, Porphyromonas gingivalisSalivary16S rRNA gene sequencingincreasing[59]Leptotrichia, Fusobacteria, Porphyromonas, Streptococcus mitis, Neisseria elongateSalivary16S rRNA gene sequencingdecreasing[59]Table 2. Clinical trials of microbiota-associated pancreatic NumberTitleStatusConditionsInterventionsNCT03809247Microbial Diversity of Pancreatic DiseasesRecruitingPancreatic CancerPancreatic DiseaseNCT03840460A Prospective Translational Tissue Collection Study in Early and Advanced Pancreatic Ductal Adenocarcinoma and Pancreatic Neuroendocrine Tumors to Enable Further Disease Characterization and the Development of Potential Predictive and Prognostic BiomarkersRecruitingPancreatic AdenocarcinomaNCT04203459The Mechanism of Enhancing the Anti-tumor Effects of CAR-T on PC by Gut Microbiota RegulationRecruitingPancreatic CancerGut MicrobiotaCAR-TNCT04600154MS-20 on Gut Microbiota and Risk/Severity of Cachexia in Pancreatic Cancer PatientsRecruitingPancreatic CancerDrug MS-20CachexiaOther PlaceboChemotherapy EffectNCT04931069Correlation Between Complications After Pancreaticoduodenectomy and MicrobiotaRecruitingPancreatic CancerOther Microbiota analysisNCT04975217Fecal Microbial Transplants for the Treatment of Pancreatic CancerRecruitingPancreatic Ductal AdenocarcinomaProcedure Fecal Microbiota TransplantationDrug Fecal Microbiota Transplantation CapsuleOther Questionnaire Administration and 2 more …NCT04993846Pancreatic Cancer and Oral MicrobiomeRecruitingOral MicrobiomeDiagnostic Test Dental plaque samplingPancreatic CancerIPMNDiagnostic Test qPCRParodontopathyNCT05193162Retrospective Study on Microbial Diversity in Paraffin Tissue of Pancreatic DiseasesRecruitingPancreatic CancerOther No any interventionPancreatic DiseaseMicrobial ColonizationNCT05271344Oral Immunonutrition With Synbiotics, Omega 3 and Vitamin D in Patients Undergoing Duodenopancreatectomy for Tumoral LesionRecruitingPancreatic CancerDietary Supplement Nutritional ProductsComplication, PostoperativeSurgery1Intratumoral microbiota is used for the early detection of pancreatic cancer. The intestinal tract, oral cavity, and NAT are the primary potential sources of the intratumoral microbiota. Of these, oral microbiota derived from saliva samples are the most readily available and are used as biomarkers for noninvasive detection [57]. Compared to healthy controls, in pancreatic cancer patients, the salivary levels of Porphyromonas, Leptrichina, Streptococcus and Leptospira significantly increased, while the levels of Neisseria and Veillonella decreased [58]. Using 16S rRNA sequencing of saliva samples from 361 pancreatic adenocarcinomas and 371 matched controls, the researchers found that Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis can increase the risk of pancreatic cancer and Fusobacteria and its genus Leptotrichia decreased this risk [59]. Additionally, Neisseria mucosa and Fusobacterium periodonticum are associated with a risk of developing pancreatic cancer [60]. Therefore, intratumoral microbiota originating from the oral cavity may be a critical target for the early diagnosis of pancreatic cancer. However, not all oral microbiota can translocate into pancreatic tumors, and the link between changes in the oral microbiota and pancreatic tumor microbiota requires further investigation. Moreover, the abundance of Actinobacteria, Proteobacteria and Firmicutes and the levels of their metabolites including acetate and butyrate in the feces of pancreatic cancer patients were significantly lower than those in normal people. This was demonstrated to be the basis for the early detection of pancreatic cancer [61]. The microbiota in feces originates from the intestinal tract, which is also a potential microbiota source in pancreatic tumors, and the development of pancreatic cancer causes changes in the gut microbiota to manifest in feces [62]. Further investigation is required to determine whether changes in intratumoral microbiota can be demonstrated by detecting microbiota in feces and using this as a potential biomarker for diagnosing pancreatic cancer. Notably, the accuracy of oral and fecal microbiota as diagnostic markers for detecting pancreatic cancer is yet to be assessed [63]. Intratumoral microbiota may have higher accuracy in the timely detection of pancreatic microbiota is used to determine the prognosis of pancreatic cancer patients. Using 16SrRNA sequencing to compare DNA samples from pancreatic cancer patients with different survival outcomes, long-term survivors with an overall survival rate of over five years contained a richer variety of intratumoral microbiota than short-term survivors [10]. Among them, Bacillus clausii, Saccharopolyspora, Streptomyces and Pseudoxanthomonas are strongly associated with the long-term survival of patients, and the abundance of these bacteria is upregulated in long-term survivors [10]. Compared with healthy controls, the abundance of Fusobacterium is significantly increased in pancreatic tumors, which correlates with a shorter survival time in patients [64]. The convincing power of this experiment would be further enhanced if the abundance of Fusobacterium in pancreatic tumors of long-term survivors were compared with that of short-term survivors. These data suggest that intratumoral microbiota acts as a potential biomarker for determining the prognostic status of pancreatic cancer. Intratumoral microbiota is potentially valuable for increasing the accuracy and convenience of prognostic screening in patients with pancreatic full articleURL Tumour immunology April 2021Kathy D McCoy, Lukas F Mager, in Current Opinion in Immunology, 2021Pancreatic cancerUnderstanding the impact of the microbiome in pancreatic ductal adenocarcinoma PDAC is still emerging; however, associations between distinct bacteria such as Porphyromonas gingivalis or Fusobacterium spp. and PDAC have been reported reviewed in Ref. [22]. Recent efforts have focused on identifying specific microbes and microbial signatures that are associated with long term survival LTS compared to short term survival STS in PDAC. Analysis of the tumor microbiome in PDAC revealed a signature of bacteria Pseudoxanthomonas–Streptomyces–Saccharopolyspora–Bacillus clausii found to be enriched in LTS [23•]. Faecal microbial transfer FMT from LTS patients into tumor bearing mice was able to reduce tumor burden and enhance intratumoral CD8+IFN-γ+ T cells when compared to FMT from STS patients. This was remarkable as comparison of matched donor samples revealed that only 25% of the tumor microbiome was represented in the fecal microbiome and only 40% of the transplanted microbiome engrafted into the mice [23•]. This may indicate that a select few bacteria are sufficient to induce anti-tumor immunity in similar study also found marked microbial differences in pancreatic tumors compared to normal pancreatic tissue, with specific enrichment of Actinobacteria, Deferribacteres and Bifidobacteria in tumors [24]. Intriguingly, ablation of the microbiome protected mice from PDAC through reduction of suppressive myeloid cell infiltration and an increase in Th1 activated CD4+ and CD8+ T cells. In contrast to the previous report, FMT from tumor-bearing hosts enhanced PDAC development in recipient mice [24].It is currently unclear as to why these studies report conflicting outcomes. It may merely be based on the stratification of LTS compared to STS microbiomes or different experimental setups. Certainly, the tumor-associated microbiome in the pancreas modulates PDAC development, but the precise dissection of host–microbiome interactions awaits further full articleURL
Có khoảng hơn nghiên cứu về lợi khuẩn Bacillus được công bố trên toàn thế giới. Trong đó, ba chủng khuẩn Bacillus subtilis, Bacillus coagulans và Bacillus clausii được phân lập, nghiên cứu và ứng dụng nhiều nhất vào đời chủng lợi khuẩn lại có những công dụng riêng có lợi với cơ thể vật chủ. Đặc biệt, khi kết hợp được cả 3 chủng lợi khuẩn B. subtilis, B. coagulans và B. clausii với nhau, tác dụng hiệp đồng của chúng càng đem lại nhiều lợi ích về sức khỏe cho con số thông tin khoa học về 3 chủng lợi khuẩn BacillusBa chủng khuẩn Bacillus subtilis, Bacillus coagulans và Bacillus clausii đều là vi khuẩn hiếu khí hoặc kỵ khí tùy ý, có khả năng tạo bào tử cũng như chịu được mọi điều kiện khắc nghiệt như thiếu khí, thiếu dinh dưỡng, khô hạn. Cũng nhờ ưu điểm vượt trội này, các vi khuẩn Bacillus sẽ đi qua dạ dày một cách an toàn, tới ruột nảy mầm và hoạt động ngay cả khi có mặt các kháng sinh như ampicillin, cephalosporin, erythromycin, lincomycin và chloramphenicol Caulier và cộng sự, 2019 Caulier, et al., 2019.Bacillus subtilis đã được các nhà khoa học chứng minh là rất an toàn và không hề có tác dụng phụ với liều uống lên đến 1×1011 CFU/ngày Theo nghiên cứu của Hong và đồng sự năm 2008.Bacillus clausii đã được công nhận là một loại vi khuẩn probiotic an toàn và thường được sử dụng trong các sản phẩm chăm sóc sức khỏe cho con người. Việc uống đủ một lượng nhất định bào tử sống sẽ giúp tạo ra hệ vi khuẩn có lợi cho hệ tiêu hóa, cung cấp thêm chất dinh dưỡng. Nghiên cứu của Marseglia và đồng sự năm 2007 cũng chỉ ra, B. clausii an toàn với cả phụ nữ có thai, trẻ sơ sinh và không hề có độc tính hay tác dụng phụ, không chống chỉ coagulans lần đầu tiên được phân lập và mô tả vào năm 1915 bởi BW Hammer tại Trạm thí nghiệm nông nghiệp Iowa – Mỹ. B. coagulans đã được FDA chứng nhận đủ điều kiện an toàn để sử dụng như thực phẩm bảo vệ sức khỏe. Vi khuẩn B. coagulans có khả năng tổng hợp acid lactic, tạo môi trường có tính acid nhẹ trong đường ruột, sản sinh ra kháng sinh tự nhiên, bacteriocin có tác dụng ức chế sự phát triển của các hại khuẩn Jurenka, 2012Tác dụng hiệp đồng của B. subtilis, B. coagulans và B. clausii Các công bố quốc tế từ một số thư viện lớn trên trên thế giới như NCBI Thư viện y khoa Hoa Kỳ về vi khuẩn Bacillus đã chỉ ra rằng mỗi chủng Bacillus có những tác dụng riêng, như B. subtilis có hoạt tính sản sinh các hợp chất kháng khuẩn, cải thiện tiêu chảy và giảm táo bón đáng kể. B. clausii có khả năng kích thích hệ thống miễn dịch tổng hợp kháng thể, giúp tăng sức đề kháng cho cơ thể. Đặc biệt là khả năng đề kháng tự nhiên với nhiều loại kháng sinh. Cuối cùng, vi khuẩn B. coagulans có tác dụng tăng cường miễn dịch, phòng chống lây nhiễm virus; đồng thời sản sinh ra các men tiêu hóa như amylase và protease có tác dụng kích thích tiêu hóa 3 vi khuẩn này B. subtilis, B. coagulans và B. clausii kết hợp với nhau trong cùng một môi trường, chúng sẽ cho những tác dụng hiệp đồng như khả năng tổng hợp hơn 70 loại kháng sinh của vi khuẩn B. subtilis, những kháng sinh này giúp tiêu diệt nhiều vi khuẩn gây hại khác. Đồng thời B. subtilis cũng có khả năng sản xuất nhiều loại ezyme giúp hỗ trợ tiêu hóa và hấp thu dinh khi đó, B. clausii lại tạo màng biofilm và tiết ra chất nhầy bao phủ lên toàn bộ niêm mạc, tạo thành một lớp lá chắn bảo vệ ruột, đại tràng. Nhờ đó phân mềm và xốp hơn, dễ đào thải ra coagulans là vi khuẩn có lợi cho hệ tiêu hóa nhờ khả năng tổng hợp nên các enzyme tiêu hóa giúp tiêu hóa thức ăn dễ dàng hơn, từ đó làm tăng cường khả năng hấp thu được nhiều dưỡng chất hơn từ thức ăn. Các peptid kháng khuẩn, bacteriocin do sản xuất giúp ức chế sự sinh trưởng của các vi khuẩn gây hại. Do đó chúng rất hiệu quả trong hỗ trợ xử lý và phòng ngừa tình trạng rối loạn tiêu hóa, loạn khuẩn đường ruột cũng như ăn không tiêu, đầy hơi, trướng bụng, đi ngoài phân sống, tiêu chủng lợi khuẩn kể trên chính là thành phần của men vi sinh bào tử lợi khuẩn Pregmom - Một loại men vi sinh cung cấp lượng lớn bào tử lợi khuẩn Bacillus vào ruột giúp cải thiện các vấn đề như tiêu hóa kém, táo bón, biếng ăn, tiêu chảy… ở trẻ nhỏ, phụ nữ mang thai và cho con tham khảoCaulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J 2019 Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in microbiology 10 JS 2012 Bacillus coagulans. Alternative Medicine Review 17 1 76-82.* Mời quý độc giả theo dõi các chương trình đã phát sóng của Đài Truyền hình Việt Nam trên TV Online!
Bacillus clausii là một trong những loài vi sinh vật được sử dụng phổ biến nhất của chi Bacillus spp trong các chế phẩm sinh học. Việc sử dụng loài lợi khuẩn này giúp tạo hàng rào bảo vệ đường ruột khỏe mạnh. Bên cạnh đó, các thử nghiệm nghiên cứu đã chỉ ra vai trò của Bacillus clausii trên trẻ sơ sinh thiếu tháng để điều trị dị ứng, ngăn ngừa nhiễm trùng và hỗ trợ điều trị tiêu chảy cấp tính, mãn tính. Mục lụcBacillus Clausii là gì?1. Đặc điểm sinh học2. Lịch sử3. Vai trò của Bacillus Clausii với sức khỏe con Điều trị dị ứng Điều trị ung Bệnh tiêu Tiêu chảy liên quan đến kháng Điều trị H. pylori Nhiễm trùng Nhiễm trùng đường hô hấp trên4. Bacillus clausii và đặc tính kháng kháng sinhTỔNG KẾTTPBVSK Imiale – Phân phối độc quyền Bifidobacterium BB12 Bacillus clausii là loài lợi khuẩn thuộc chi Bacillus spp được sử dụng phổ biến trong thực phẩm, đồ uống sữa và các sản phẩm bổ sung. Trái ngược với các chế phẩm sinh học axit lactic như lactobacilli và bifidobacterium, Bacillus spp có khả năng chịu axit và nhiệt cực cao. Bacillus clausii được đặc trưng bởi một số đặc tính độc đáo, bao gồm Khả năng chống lại mật và axit dạ dày Khả năng tồn tại và phát triển ở nồng độ muối mật cao Chính vì thế những đặc tính này đã được ứng dụng trong các sản phẩm thương mại. Bacillus clausii được bảo quản mà không cần làm lạnh hoặc ở dạng sấy khô không ảnh hưởng tiêu cực đến khả năng tồn tại của nó. Bacillus clausii là loài lợi khuẩn thuộc chi Bacillus spp được sử dụng phổ biến trong thực phẩm, đồ uống sữa và các sản phẩm bổ sung. 1. Đặc điểm sinh học Bacillus clausii là loài vi khuẩn với các đặc điểm sinh học như Tồn tại trong môi trường hiếu khí có oxy Có khả năng tạo bào tử Bền vững trong môi trường acid của dịch vị dạ dày, Chính vì thế bào tử lợi khuẩn Bacillus clausii đi qua dạ dày một cách an toàn, tới ruột nảy mầm thành vi khuẩn có lợi cho hệ tiêu hóa ngay cả khi có mặt các kháng sinh như Ampicillin, Cephalosporin, Erythromycin, Lincomycin và Cloramphenicol … 2. Lịch sử Chi Bacillus spp. đã được sử dụng trong nhiều thập kỷ dưới dạng các sản phẩm lên men hoặc các chất bổ sung lợi khuẩn dạng bào tử. Tuy nhiên, chỉ có một số chủng Bacillus được công nhận là an toàn và được sử dụng cho mục đích thương mại. Về mặt lâm sàng, B. clausii là một trong những vi sinh vật được sử dụng phổ biến nhất của Bacillus spp. Các chế phẩm lợi khuẩn probiotic đã được sử dụng trong suốt lịch sử. Vào năm 76 trước Công nguyên, nhà sử học La Mã Plinius đã mô tả sữa lên men như một phương thuốc chữa bệnh viêm dạ dày ruột. Năm 1916, các thí nghiệm đã được tiến hành để cấy vi khuẩn Escherichia coli như một phương tiện chống lại vi khuẩn đường ruột gây bệnh. Năm 1965, thuật ngữ “probiotic” lần đầu tiên được sử dụng để mô tả “các chất do một vi sinh vật tiết ra để kích thích sự phát triển của vi sinh vật khác”. Hay nói dễ hiểu hơn, chúng có tác dụng ngược lại với kháng sinh. Các định nghĩa sửa đổi đã xuất hiện trong tài liệu để điều chỉnh các cơ chế hoạt động và kích thích của các hệ thống khác ngoài vi khuẩn. Một nhóm đã đề xuất một định nghĩa toàn diện “Probiotics là những chế phẩm hoặc sản phẩm có chứa các vi sinh vật sống với số lượng đủ lớn, có thể làm thay đổi hệ vi sinh bằng cách cấy ghép hoặc sinh sản trong cơ thể vật chủ đem lại hiệu quả có lợi cho sức khỏe vật chủ Theo Schrezenmeir 2001. Nghiên cứu về vi sinh vật sống trong đường tiêu hóa của con người và ảnh hưởng của chúng đối với bệnh tật là một phần quan trọng của Dự án hệ vi sinh vật ở người đang diễn ra của Viện Y tế Quốc gia Hoa Kỳ Theo NIH 2014. Năm 1965, thuật ngữ “probiotic” lần đầu tiên được sử dụng để mô tả “các chất do một vi sinh vật tiết ra để kích thích sự phát triển của vi sinh vật khác” 3. Vai trò của Bacillus Clausii với sức khỏe con người Bacillus Clausii có tác dụng hỗ trợ hệ vi sinh vật đường ruột tự nhiên của cơ thể thông qua các cơ chế bao gồm Sản sinh các chất ức chế mầm bệnh Ức chế sự gắn kết của mầm bệnh Ức chế hoạt động của độc tố vi sinh vật Tổng hợp ra các vitamin và các enzyme kích thích tiêu hóa/tăng cường hấp thu dinh dưỡng. Giúp kích thích cơ thể sản sinh miễn dịch giúp tăng sức đề kháng. Với những cơ chế tác dụng trên, Bacillus clausii có vai trò quan trọng trong việc hỗ trợ điều trị các bệnh lý. Cụ thể như Điều trị dị ứng Cải thiện các triệu chứng dị ứng và số ngày điều trị khi sử dụng Bacillus Clausii cùng với thuốc kháng histamin Nghiên cứu thí điểm kéo dài 3 tuần được thực hiện trong mùa phấn hoa ở 20 trẻ em bị dị ứng tuổi trung bình là 13,4 tuổi. Tất cả 20 trẻ đều được cho dùng levocetirizine 5 mg để giảm triệu chứng. Trong đó có 10 trẻ được phân chia ngẫu nhiên để nhận 3 lọ B. clausii uống mỗi ngày 2 x 10 9 bào tử / lọ cùng với levocetirizine. Kết quả So với ban đầu, sự cải thiện đáng kể về tổng số các triệu chứng ở mũi và số lượng bạch cầu ái toan trong mũi đã được quan sát thấy ở nhóm dùng Bacillus clausii. Sự cải thiện này không được quan sát thấy ở nhóm đối chứng, nhóm chỉ nhận được thuốc kháng histamin theo yêu cầu levocetirizine. Trẻ em dùng Bacillus clausii cũng cần ít ngày sử dụng levocetirizine hơn trẻ em trong nhóm chứng 8,1 ngày so với 11,1 ngày Điều trị ung thư Tính kháng độc tố là một đặc tính chức năng đặc trưng cho vi khuẩn probiotic được quan tâm trên lâm sàng. Các đột biến gây ra bởi nhiều hợp chất liên quan đến thực phẩm như Độc tố nấm mốc aflatoxin B1 AFB1 Amin dị vòng 2-amino-3,4-dimethylimidazo [4,5-f] quinoline MeIQkết quả của quá trình phân cắt, lên men thực phẩm protein như thịt và cá có khả năng gây đột biến cao . Tính kháng độc tố thường được coi là phụ thuộc vào chủng Trong số 21 chủng Bacillus spp. B. clausii, Bacillus subtilis, Bacillus lentus, Bacillus pumilus, Bacillus firmus, Bacillus megaterium,… được thử nghiệm để ức chế với 4 độc tố gen 4-nitroquinoline-1-oxide 4-NQO, nitrosamine N-methyl-N′-nitro-nitrosoguanidine MNNG, AFB1 và MeIQ. Tất cả các chủng đều làm giảm độc tính di truyền mà không có đặc tính của chủng loài đã được báo cáo đối với Lactobacilli và Bifidobacteria. Kết quả Bacillus thể hiện tính kháng độc đối với genotoxin 4-NQO trực tiếp cao hơn lớn hơn 92% so với lợi khuẩn Lactobacillus rhamnosus GG 85,7% và lactobacillus từ sữa. L. rhamnosus hoạt động mạnh hơn chống lại MeIQ 62,8% và AFB1 80,8% so với Bacillus tương ứng 45% và 64,3%. L. rhamnosus không có hiệu quả chống lại MNNG. Trong khi Bacillus ức chế genotoxin này từ 78-99 %. Bệnh tiêu chảy Khi sử dụng 2 viên nang Bacillus Clausii chứa 2 x 10 9 đơn vị hình thành khuẩn lạc/viên, chia 2 lần/ ngày, dùng trong 10 ngày cải thiện đáng kể thời gian tiêu chảy trung bình từ 34,8 đến 9,3 phút / ngày, tần suất tiêu chảy từ 6,96 đến 1,78 lần / ngày, giảm tình trạng đau bụng và phân lỏng. Tiêu chảy liên quan đến kháng sinh Các thử nghiệm đánh giá hiệu quả của lợi khuẩn giúp cải thiện tình trạng loạn khuẩn tiêu chảy liên quan đến kháng sinh. Tuy nhiên hiện nay chưa có thử nghiệm nào đánh giá khả năng phục hồi hoặc cải thiện hệ vi sinh vật của Bacillus clausii một cách cụ thể. Xem thêm Tại sao uống kháng sinh bị tiêu chảy Điều trị H. pylori Bổ sung Bacillus Clausii cùng với liệu pháp bộ ba điều trị Helicobacter pylori Clarithromycin, Amoxicillin và Rabeprazole không làm tăng tỷ lệ diệt trừ Tuy nhiên nó giúp giảm các tác dụng phụ như cảm giác buồn nôn, nguy cơ tiêu chảy, đau thượng vị ở bệnh nhân. Nhiễm trùng huyết clausii được sử dụng dự phòng cho trẻ sinh non ngăn ngừa nguy cơ nhiễm trùng huyết khởi phát muộn đã được đánh giá trong một thử nghiệm tại Ấn Độ vào năm 2015. Thử nghiệm Sử dụng B. clausii dự phòng để giảm nguy cơ nhiễm trùng huyết khởi phát muộn ở trẻ sinh non đã được đánh giá trong một thử nghiệm mù đôi, ngẫu nhiên, có đối chứng với giả dược ở 244 trẻ sơ sinh non tháng tuổi thai dưới 34 tuần ở Ấn Độ. Trẻ sơ sinh được xếp vào 2 nhóm Nhóm cực kỳ non tháng thai 27 đến 30 tuần Nhóm rất non tháng thai 31 đến 33 tuần. clausii Enterogermina 2,4 x10 9 bào tử / ngày được sử dụng cho đến khi 6 tuần tuổi sau sinh hoặc xuất hiện nhiễm trùng huyết khởi phát muộn hoặc xuất viện, tùy điều kiện nào xảy ra trước. Kết quả Không có sự khác biệt nào về tỷ lệ nhiễm trùng huyết được xác định. Nhiễm trùng đường hô hấp trên Một nghiên cứu đã điều tra tính an toàn và hiệu quả của việc điều trị Bacillus clausii và tỷ lệ nhiễm trùng tái phát. Nghiên cứu trên 80 trẻ em từ 3 đến 6 tuổi học tại các trung tâm chăm sóc trẻ ban ngày nhà trẻ hoặc trường tiểu học và bị nhiễm trùng đường hô hấp tái phát. Tiến hành Nhóm chứng ½ đối tượng nghiên cứu chỉ dùng desloratadine để điều trị triệu chứng. Nhóm probiotic ½ số trẻ được chọn ngẫu nhiên để dùng Bacillus clausii Enterogermina 2 x 10 9 bào tử/5ml uống hai lần mỗi ngày trong 90 ngày kết hợp với desloratadine để điều trị triệu chứng. Kết quả Trong suốt thời gian điều trị, thời gian nhiễm trùng đường hô hấp giảm đáng kể ở trẻ em dùng Bacillus clausii so với trẻ em trong nhóm chứng. Không có tác dụng phụ liên quan đến điều trị được quan sát thấy. 4. Bacillus clausii và đặc tính kháng kháng sinh Đặc tính kháng kháng sinh của Bacillus clausii B. clausii đề kháng với các loại kháng sinh thường dùng và thể hiện khả năng kháng nội tại với các penicilin, cephalosporin, aminoglycosid và macrolid. Bacillus clausii có khả năng kháng lại tetracycline và cloramphenicol, và kháng rifampicin do đột biến nhiễm sắc thể. Tính kháng với lincomycin, isoniazid, cycloserine và acid nalidixic cũng đã được báo cáo. Các chủng B. clausii có khả năng giải phóng các chất kháng khuẩn có hoạt tính chống lại Staphylococcus aureus, Enterococcus faecium và Clostridium difficile. Thông tin sản phẩm chứa Bacillus clausii của nhà sản xuất Erceflora và Enterogermina B. clausii đề kháng với các loại kháng sinh thường dùng và thể hiện khả năng kháng nội tại với các penicilin, cephalosporin,… Liều lượng Người lớn 4 đến 6 x 109 bào tử / ngày Trẻ em và trẻ sơ sinh bú sữa mẹ 2 đến 4 x 109 bào tử / ngày. Nên sử dụng trong thời gian ngắn. Tiêu chảy cấp người lớn Một viên nang B. clausii 2 x 109 CFU / viên dùng đường uống hai lần mỗi ngày trong 10 ngày. Dị ứng ở trẻ em B. clausii 3 lọ / ngày 2 x 109 bào tử / lọ dùng đường uống trong 3 tuần cho trẻ em bị dị ứng. Cải thiện tác dụng phụ khi điều trị H. pylori gây ra clausii Enterogermina 2 x 109 bào tử / lọ uống 3 lần mỗi ngày bổ sung cho người lớn dương tính với H. pylori không có triệu chứng trong 7 ngày điều trị H. pylori clarithromycin, amoxicillin và rabeprazole và kéo dài đến 7 ngày sau đó. Trẻ sinh non tuổi thai dưới 34 tuần clausii Enterogermina 2 x 109 bào tử/5 mL hỗn dịch uống dùng 2 ml mỗi 8 giờ trộn với thức ăn qua đường ruột cung cấp 2,4 x 109 bào tử mỗi ngày cho đến khi 6 tuần tuổi sau sinh. Nhiễm trùng đường hô hấp trên ở trẻ em clausii Enterogermina 1 lọ, 2 x 109 bào tử/5 mL hỗn dịch uống uống hai lần mỗi ngày trong 90 ngày ở trẻ em từ 3 đến 6 tuổi. Lưu ý B. clausii có thể được sử dụng trong thời kỳ mang thai và cho con bú, và cho trẻ bú mẹ. B. clausii đã được sử dụng an toàn cho đến 6 tuần ở trẻ sinh non tuổi thai dưới 34 tuần trong một nghiên cứu lâm sàng trên 244 trẻ sơ sinh. Tương tác Tương tác duy nhất được biết là với thuốc kháng sinh. B. clausii nên được dùng trong khoảng thời gian giữa các lần dùng kháng sinh. Tác dụng không mong muốn Bổ sung lợi khuẩn nói chung tương đối an toàn, ngay cả ở trẻ sơ sinh và trẻ sơ sinh nhẹ cân. Không có tác dụng phụ nào được ghi nhận trong các thử nghiệm lâm sàng của Bacillus clausii hoặc trong thông tin sản phẩm của nhà sản xuất. Xem thêm Lợi khuẩn bifido – lợi khuẩn thiết yếu cho trẻ nhỏ TỔNG KẾT Bacillus clausii là một loại Bacillus spp đã được công nhận an toàn và sử dụng nhiều trong các sản phẩm thương mại. Trong đó chúng thường được sử dụng trong chế phẩm sinh học. Có nhiều dữ liệu lâm sàng đã minh chứng cho việc sử dụng chúng để điều trị và ngăn ngừa suy giảm hàng rào đường ruột. Các thử nghiệm nhỏ đã nghiên cứu việc sử dụng ở trẻ sơ sinh thiếu tháng để ngăn ngừa nhiễm trùng, điều trị dị ứng mũi và nhiễm trùng đường hô hấp trên ở trẻ em, và điều trị tiêu chảy cấp tính hoặc mãn tính và tác dụng phụ của liệu pháp Helicobacter pylori ở người lớn. Mọi thắc mắc về sức khoẻ xin liên hệ HOTLINE 1900 9482 hoặc 0967 629 482. Tham khảo nguồn Pubmed Bên cạnh các sản phẩm bào tử lợi khuẩn chứa Bacillus clausii, hiện nay các chuyên gia y tế đánh giá cao các sản phẩm men vi sinh dạng sống, được bổ sung dưới dạng lợi khuẩn bao kép có khả năng gắn đích cao tại niêm mạc đại tràng. TPBVSK Imiale – Phân phối độc quyền Bifidobacterium BB12 Lợi khuẩn nhập khẩu trực tiếp từ Đan Mạch Imiale là thành tựu sau 145 năm nghiên cứu của các nhà khoa học tại Đan Mạch. Sản phẩm lợi khuẩn hàng đầu, được giám sát chặt chẽ quy trình sản xuất đảm bảo tiêu chuẩn GMP – EU Lợi khuẩn độc quyền tại Việt Nam Imiale là lợi khuẩn duy nhất tại Việt Nam bổ sung chủng Bifidobacterium BB12 Lợi khuẩn Bifidobacterium có số nghiên cứu lâm sàng lớn nhất thế giới 307 nghiên cứu quốc tế An toàn tuyệt đối Imiale được nhận chứng nhận GRAS An toàn tuyệt đối của FDA và EFSA. Lợi khuẩn uy tín hàng đầu Imiale được ESPGHAN Tổ chức tiêu hóa nhi khoa Châu Âu khuyên dùng Liên hệ tư vấn qua hotline 19009482 hoặc 0967629482
bacillus subtilis và bacillus clausii